富士通:Fugakuでアプリを搭載:Cradle CFD、CONVERGE(動画):  Fujitsu: Commercial application in Fugaku: Cradle CFD, CONVERGE:  富士通:配备富学的商业应用:Cradle CFD、CONVERGE

富士通:Fugakuでアプリを搭載:Cradle CFD、CONVERGE(動画): 
Fujitsu: Commercial application in Fugaku: Cradle CFD, CONVERGE: 
富士通:配备富学的商业应用:Cradle CFD、CONVERGE

富士通:

6月23日、スパコン「Fugaku」上で、流体解析などのシミュレーション向け商用アプリケーションを用いて実行した。

大規模かつ高精細な解析が高速に行えることを、アプリベンダー各社と協働で実証した。

FUJITSU Supercomputer :PRIMEHPC

PRIMEHPCは、富岳の技術を活用している。

製造業のニーズが高い商用アプリについて、
製造各社と動作検証や性能向上を実施し、
6月より、順次提供開始予定。

商用アプリケーション対応:

商用アプリケーションをそのまま、
大規模高速計算のFugakuやPRIMEHPCシリーズなど、
スーパーコンピューターで利用する。

「顧客が保有する商用アプリを活用できる」など、大きなメリットがある。

高速シミュレーション結果:

商用アプリが高速動作するよう、
性能分析して、ボトルネックを解消し、
チューニングを実施した。

高並列で効率良く計算するための、並列処理技術の適用などを実施した。

8つの商用アプリ:

その結果、8つの商用アプリケーションの動作検証を完了した。

3つの商用アプリ:

3つの商用アプリについて、
富岳を用いた大規模解析で、
高速高精細なシミュレーション結果が得られた。

解析の利用分野:

航空機バフェットを解析:

航空機の安全性に影響を及ぼす、バフェットを解析、振動現象を予測した。

富岳の最大19万2000CPUコアを活用して、
熱流体解析Cradle CFD | scFLOWを並列実行し、
2億3700万要素の高精細なモデルを解析、

解析手法LESで、細かな渦を再現した。

自動車エンジン燃焼解析:

自動車などの燃費向上や環境性能改善に向けた、

エンジンにおけるエネルギー効率向上の解析。

富岳の最大4620CPUを用い実証した。

エンジン内ピストン動作によるシリンダー内燃焼など、化学反応を解析。

燃焼解析を、
熱流体解析「CONVERGE」並列計算により、
2時間で行えることを確認した。

クラウド Watch

https://cloud.watch.impress.co.jp/docs/news/1333393.html

Fujitsu Demonstrates High Performance Simulations for Industrial Use Cases with Commercial Applications on the World’s Fastest Supercomputer,

Fugaku News

Facts:

Fujitsu has successfully demonstrated that large-scale, high-definition analysis can be performed with commercial applications widely used in the industrial space on the supercomputer

Fugaku Fujitsu is additionally validating operations of commercial applications widely used by industrial customers on its PRIMEHPC series

Vendors will begin to offer applications optimized for Fugaku and the PRIMEHPC series from June 2021

1. Improvement of aircraft safety

During flight, an aircraft may experience a vibration phenomenon called buffet, which affects its safety and flight stability.

Predicting buffet vibration is an important issue for aircraft safety design.

This time, by executing the thermal fluid analysis application Cradle CFD | scFLOW (3) in parallel using the maximum possible 192,000 out of Fugaku’s total number of CPU cores (4) of Fugaku and analyzing a high-definition model of 237 million elements with LES (5),

which is an analysis method capable of expressing fine vortexes, it was possible to observe a phenomenon whereby pressure vibration and fine vortexes are generated on the surface of the blade.

This makes it possible to predict the buffet effect in greater detail than the conventional RANS (6) analysis method using a coarse calculation grid.

This proved that large-scale analyses leading to the safe design of aircraft taking into account the buffet could be calculated.

2. Improvement of energy efficiency of automobile engines

Improving the energy efficiency of engines is an important issue for improving the fuel efficiency and environmental performance of automobiles.

A combustion analysis
that takes into account a series of chemical reactions, such as combustion inside a cylinder caused by piston action in the engine, was performed in two hours with parallel calculation using the thermal fluid analysis application CONVERGE (7) using up to 4,620 CPU cores of Fugaku’s cores.

In this analysis,
the entire region was divided by a high-precision calculation grid (up to 6.67 million grids) of 0.5 mm units, and the use of LES made it possible to successfully obtain high-precision results showing a wrinkled flame structure, which would prove difficult with conventional RANS analysis.

As a result, highly accurate analysis
can be performed even during the limited time required for design work in the manufacturing industry, which is expected to lead to improvements in engine energy efficiency and reductions in abnormal combustion.

3. Reduction of energy loss in driving motors for electric vehicles

To improve the energy efficiency of electric and hybrid vehicles, it is necessary to reduce energy loss in the driving motor.

One of the methods to calculate the loss generated by IPM motors (8) used in electric vehicles, etc.,

with high accuracy is to model the steel sheet of the iron core constituting the motor one by one, and to use the method to input the current containing harmonics.

Conventional x86 clusters require several weeks to complete the calculation,

but using Fugaku’s 8,192 CPU cores and running them in parallel in the electromagnetic field analysis application JMAG (9), it can be done in a day (10).

As a result, it is expected that analysis leading to improved energy efficiency in electric vehicles can be performed in a shorter time.

Fujitsu Global

https://www.fujitsu.com/global/about/resources/news/press-releases/2021/0623-02.html