东京大学:高纯氢气提取:“光触媒”成功

东京大学:高纯氢气提取:“光触媒”成功

-利用“光触媒”的功能-

东京大学
信州大学
尼多

在100平方米的规模上,
用于安全提取高纯度氢气的实验
研究小组取得了成功。
今年8月,它在国际科学期刊《自然》上公布。

大量低成本制氢:

我们使用了一种“光催化剂”,通过将水暴露在阳光下将其分解为氢和氧。

预计其结果将导致大规模和低成本制造的技术。

这个实验:

使用附有光催化物质的面板。

将面板放在室外并倒水。

它是为了响应阳光而产生的,
来自氢气和氧气的混合气体
通过穿过多孔膜
只提取氢气。

实验结果:

产生的氢气超过 70%
纯度高达94%左右
我能够安全地取出它。
自从我还是个孩子以来,它已经进行了大约两年。

东京大学
Kazunari Dou,特聘教授

由于存在爆炸的危险,如此大规模的实验在世界上是前所未有的。

我们通过考虑可以安全处理的方法开发该设备。
我想尽快把它投入实际使用,为世界提供廉价的氢气。
什么是光触媒:

它是一种在光照下促进周围物质发生化学反应的物质。

作为典型物质,用于白色涂料和化妆品的“氧化钛”是众所周知的。

环境 | NHK 新闻

https://www3.nhk.or.jp/news/html/20211017/k10013310361000.html

世界初!日本勢がソーラー水素の安全な製造と分離・回収技術を達成 人工光合成に一歩近づく | EnergyShift

https://energy-shift.com/news/28271049-d42d-4a8f-861a-0890f9e5f6ec

Photocatalytic solar hydrogen production from water on a 100-m2 scale

The most efficient solar hydrogen production schemes,

which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale3.

Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%,

but the system design is much simpler and cheaper and more amenable to scale-up1,2

provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered.

Extending our earlier demonstration of a 1-m2 panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst4,

we here report safe operation of a 100-m2 array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane5.

The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%.

While the hydrogen production is inefficient and energy negative overall,

our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible.

To make the technology economically viable and practically useful,

essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency.

Nature

https://www.nature.com/articles/s41586-021-03907-3

Hydrogen extracted from water on larger scale | NHK WORLD-JAPAN News

https://www3.nhk.or.jp/nhkworld/en/news/20211017_03/